Q1. Which one of the equations below represents a reaction that is feasible at all temperatures?
A $\quad \mathrm{P}(\mathrm{s}) \rightarrow \mathrm{Q}(\mathrm{s})+\mathrm{R}(\mathrm{g}) \quad$ endothermic
B $\quad 2 \mathrm{~L}(\mathrm{~g})+\mathrm{M}(\mathrm{g}) \rightarrow 2 \mathrm{~N}(\mathrm{~g}) \quad$ exothermic
C $\mathrm{S}(\mathrm{g}) \rightarrow 2 \mathrm{~T}(\mathrm{~g}) \quad$ exothermic
D $\quad \mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \rightarrow \mathrm{C}(\mathrm{g}) \quad$ endothermic
(Total 1 mark)

Q2. Which one of the following reactions in aqueous solution has the most positive change in entropy?
A $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
B $\quad\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{--}+6 \mathrm{H}_{2} \mathrm{O}$
C $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{EDTA}^{4-} \rightarrow[\mathrm{Cu}(\text { EDTA })]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$
D $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
(Total 1 mark)

Q3. Refer to the following reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \Delta H^{\Theta}=-11 \mathrm{~kJ} \mathrm{~mol}^{-1}, \quad \Delta \mathrm{~S}^{\Theta}=+20 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
$$

Which one of the following statements is correct?
A This is a redox reaction.
B The reaction is not feasible below 298 K
C At equilibrium, the yield of hydrogen iodide is changed by increasing the pressure.
D At equilibrium, the yield of hydrogen iodide increases as the temperature is increased.
(Total 1 mark)

Q4.This question is about the reaction given below.

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Enthalpy data for the reacting species are given in the table below.

Substance	$\mathrm{CO}(\mathrm{g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\mathrm{CO}_{2}(\mathrm{~g})$	$\mathrm{H}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}_{\mathrm{r}}^{\boldsymbol{\Theta}} / \mathrm{kJ} \mathrm{mol}^{-1}$	-110	-242	-394	0

Which one of the following statements is not correct?
A The value of K_{p} changes when the temperature changes.
B The activation energy decreases when the temperature is increased.
C The entropy change is more positive when the water is liquid rather than gaseous.
D The enthalpy change is more positive when the water is liquid rather than gaseous.
(Total 1 mark)

Q5.Which one of the following statements is not correct?
A The first ionisation energy of iron is greater than its second ionisation energy.
B The magnitude of the lattice enthalpy of magnesium oxide is greater than that of barium oxide.

C The oxidation state of iron in $\left[\mathrm{Fe}(\mathrm{CN})_{]^{-}}{ }^{3-}\right.$ is greater than the oxidation state of copper in $\left[\mathrm{CuCl}_{2}{ }^{-}\right.$

D The boiling point of $\mathrm{C}_{3} \mathrm{H}_{8}$ is lower than that of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(Total 1 mark)

Q6.Using the information below, answer this question.

	$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathbf{s})$	$\mathrm{H}_{2}(\mathbf{g})$	$\mathrm{Fe}(\mathbf{s})$
$\Delta H^{\ominus} / \mathrm{kJ} \mathrm{mol}^{-1}$	-822.0	0	0
$\Delta S^{\ominus} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$	90.0	131.0	27.0

The standard entropy value for steam is
A $\quad+332 \mathrm{~J} \mathrm{~K}^{『 1} \mathrm{~mol}^{-1}$
B $\quad+189 \mathrm{~J} \mathrm{~K}^{\boxed{ } 1} \mathrm{~mol}^{-1}$
C $\quad+145 \mathrm{~J} \mathrm{~K}^{81} \mathrm{~mol}^{-1}$
D $\quad+85 \mathrm{~J} \mathrm{~K}^{『 1} \mathrm{~mol}^{-1}$
(Total 1 mark)

Q7.In which one of the following reactions is there a decrease in entropy?

A $\quad\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})+3 \mathrm{C}_{2} \mathrm{O}^{2-}$ (aq) $\rightarrow\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
B $\quad\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathrm{aq})+\mathrm{EDTA}^{4-}(\mathrm{aq}) \rightarrow[\mathrm{Cu}(\text { EDTA })]^{2-}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
C $\quad\left[\mathrm{CoCl}_{4}\right]^{2-}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq})$
D $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Q8.This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Thermodynamic data for the components of this equilibrium are:

Substance	$\Delta \boldsymbol{H}^{\boldsymbol{\Theta}} / \mathrm{kJ} \mathrm{mol}$	
$\mathbf{- 1}$	$\boldsymbol{s}^{\boldsymbol{\Theta}} / \mathrm{J} \mathrm{K}^{\mathbf{1}} \mathbf{~ m o l}^{-1}$	
$\mathrm{SO}_{3}(\mathrm{~g})$	-396	+257
$\mathrm{SO}_{2}(\mathrm{~g})$	-297	+248
$\mathrm{O}_{2}(\mathrm{~g})$	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa , occurs in a vessel of volume $1.80 \mathrm{dm}^{3}$. At equilibrium, the vessel contains $0.0500 \mathrm{~mol}^{\text {of } \mathrm{SO}_{2}(\mathrm{~g}), 0.0800 \mathrm{~mol} \text { of } \mathrm{O}_{2}(\mathrm{~g}) \text { and }}$ $0.0700 \mathrm{~mol}^{\mathrm{of} \mathrm{SO}_{3}(\mathrm{~g}) \text {. }}$

The standard entropy change for this reaction is
A $\quad-222 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
B $\quad-195 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
C $\quad-186 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
D $\quad+198 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(Total 1 mark)

Q9. Which one of the following best explains why the lattice enthalpy of magnesium chloride is much larger than that of lithium chloride?

A Magnesium has a greater electronegativity than lithium.
B Magnesium ions have a greater polarising power than lithium ions.
C Magnesium ions have a greater ionic radius than lithium ions.
D Magnesium ions have a greater charge than lithium ions.
(Total 1 mark)

Q10. Which one of the following has the most covalent character?
A MgF_{2}
B MgBr_{2}
C AlF_{3}
D AlBr_{3}
(Total 1 mark)

Q11.The following information concerns the equilibrium gas-phase synthesis of methanol.
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
At equilibrium, when the temperature is $68^{\circ} \mathrm{C}$, the total pressure is 1.70 MPa .
The number of moles of $\mathrm{CO}, \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ present are $0.160,0.320$ and 0.180 , respectively.
Thermodynamic data are given below.

Substance	$\Delta H_{\mathrm{f}}^{\boldsymbol{\Theta}} / \mathrm{kJ} \mathrm{mol}^{-1}$	$\boldsymbol{s}^{\boldsymbol{\Theta} / / \mathrm{J}^{-1} \mathrm{~mol}^{-1}}$
$\mathrm{CO}(\mathrm{g})$	-110	198
$\mathrm{H}_{2}(\mathrm{~g})$	0	131
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$	-201	240

The standard entropy change for this reaction is
A $\quad-220 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
B $\quad+220 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
C $\quad-89 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
D $\quad+89 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Q12. The compound lithium tetrahydridoaluminate(III), LiAlH_{4}, is a useful reducing agent. It behaves in a similar fashion to NaBH_{4}. Carbonyl compounds and carboxylic acids are reduced to alcohols. However, LiAlH_{4} also reduces water in a violent reaction so that it must be used in an organic solvent.

Which one of the following concerning the violent reaction between LiAlH_{4} and water is false?
A A gas is produced.
B The activation energy for the reaction is relatively high.
C The reaction has a negative free-energy change.
D Aqueous lithium ions are formed.

Q13. Which one of the following has the most covalent character?
A MgF_{2}
B MgBr_{2}
C AlF_{3}
D AlBr_{3}

